Showing posts with label auditability. Show all posts
Showing posts with label auditability. Show all posts

Saturday, December 29, 2018

Transparency

We need to distinguish between an overall system which is in part powered by AI algorithms and the algorithms themselves.

We also need to distinguish between transparency to whom, e.g. an end-user, an operator, an auditor or a regulator.

There should be no difference between a system if it powered by AI or not and companies should have the necessary policies and processes in place to provide transparency and auditability at a system level.

The focus will be AI algorithms.

Creating transparency by opening the algorithm, e.g. exposing the code, is in most cases not feasible for legal and practical reasons.

There is precedence for the legal consideration. For example, credit rating algorithms are legally considered a trade secret and hence protected from exposure to the public. Even for Germany, which is in generally in the forefront of consumer protection, this is the case for the national credit scoring organization Schufa

Practically, many machine learning algorithms, specifically neural networks, are so complex that they cannot be understood by looking at the code.

As the result of my research and discussion with others working in the field, I see two levels of transparency which could be implemented.

The first, weaker level, is publishing the intentions and policies which are implemented by the algorithm. For the credit scoring case, the intend is to access one's credit risks and the policies could be the amount of credit in relationship to one's net-worth, one's payment history, etc. 

A second level can be achieved by counterfactual explanations. They explain why a negative decision has been made and how circumstances would have had to differ for a desirable outcome. For example, I would have gotten a million dollar loan if I had $250,000 more in assets as collateral, or if I had not defaulted on a car loan 20 years ago.

Counterfactual explanations are discussed in depth in these two papers by Sandra Wachter, Brent Mittelstadt and Chris Russell: 



The concept of counterfactual explanations has been implemented by Google’s What-if tool for Tensorflow.

There are questions which remain:
How to demonstrate that an algorithm implements a certain policies?
Testing, e.g. with Monte Carlo simulations, might be able to demonstrate this is achieved (to a certain extend).

How to resolve an appeal by a user who is not satisfied with counterfactual explanation? What would be the basis for deciding the appeal?
One possible approach would be that person appointed by the operator of the system would make a decision based on the company policy. Further appeals to a human-made decision would follow existing practice.

Monday, December 24, 2018

The Meta Data Manifest


Because data is critical to AI algorithms it must be handled with the necessary rigor and transparency.

The meta data about the data which is used to train an algorithm needs to be carefully documented, including time of data collection, the collection method and device (if applicable), the location of the collection, if and how the data has been cleaned and validated, intended uses, maintenance, life cycle etc.

The article "Datasheets for Datasets" by Timnit Gebru et al. motivates and introduces this approach.

Such a manifest provides auditability and transparency and lays the foundation for responsibility and accountability.

It is important to incorporate the notion of the meta data manifest in machine learning tools and workbenches automate the meta data collection and maintenance wherever possible.